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The navigation filter architecture successfully deployed on the Morpheus flight
vehicle is presented. The filter was developed as a key element of the NASA Au-
tonomous Landing and Hazard Avoidance Technology (ALHAT) project and over
the course of 15 free fights was integrated into the Morpheus vehicle, operations,
and flight control loop. Flight testing completed by demonstrating autonomous
hazard detection and avoidance, integration of an altimeter, surface relative ve-
locity (velocimeter) and hazard relative navigation (HRN) measurements into the
onboard dual-state inertial estimator Kalman flter software, and landing within 2
meters of the vertical testbed GPS-based navigation solution at the safe landing
site target. Morpheus followed a trajectory that included an ascent phase fol-
lowed by a partial descent–to-landing, although the proposed filter architecture
is applicable to more general planetary precision entry, descent, and landings.
The main new contribution is the incorporation of a sophisticated hazard relative
navigation sensor–originally intended to locate safe landing sites–into the naviga-
tion system and employed as a navigation sensor. The formulation of a dual-state
inertial extended Kalman filter was designed to address the precision planetary
landing problem when viewed as a rendezvous problem with an intended landing
site. For the required precision navigation system that is capable of navigating
along a descent-to-landing trajectory to a precise landing, the impact of attitude
errors on the translational state estimation are included in a fully integrated nav-
igation structure in which translation state estimation is combined with attitude
state estimation. The map tie errors are estimated as part of the process, thereby
creating a dual-state filter implementation. Also, the filter is implemented using
inertial states rather than states relative to the target. External measurements
include altimeter, velocimeter, star camera, terrain relative navigation sensor, and
a hazard relative navigation sensor providing information regarding hazards on a
map generated on-the-fly.

I. Introduction

The extended Kalman filter has long been the workhorse of space-based navigation systems for on-
orbit rendezvous, ranging from the early days of Apollo to the more recent era of the Space Shuttle.
The Kalman filter is well-known and well-documented in the literature, dating from Kalman’s
original work in 1960.1 We pose the precision planetary landing problem as a rendezvous problem
with an intended landing site. For the required precision navigation system that is capable of
navigating along a descent-to-landing trajectory to a precise landing, the impact of attitude errors
on the translational state estimation are included in a fully integrated navigation structure in which
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translation state estimation is combined with attitude state estimation. In addition, the map tie
errors are estimated as part of the process, thereby creating a dual-state filter implementation.
Also, the filter is implemented using inertial states rather than states relative to the target.

The problem that motivates our filter architecture approach is planetary descent-to-landing,
however, the application of the proposed dual-state inertial extended Kalman filter is not limited
to this class of problems. For example, this filter architecture was deployed on the Morpheus flight
vehicle that followed a trajectory that included an ascent phase followed by a partial descent–to-
landing. As the trajectory progresses, external measurements may include altitude (i.e, altimeter),
relative velocity (e.g., velocimeter), attitude (e.g., star camera), position relative to a pre-loaded
map (e.g., a terrain relative navigation (TRN) sensor), and a hazard relative navigation (HRN) sen-
sor providing information regarding hazards to the targeting subsystem, as well as measurements
relative to a map generated on-the-fly. An internal inertial measurement unit (IMU) provides mea-
surements of non-gravitational accelerations and body rates. The location of the ground features
are assumed to be corrupted by map-tie errors, all external sensors and the IMU are assumed to
produce measurements exhibiting systematic and random errors, estimates of the initial position
and velocity of the spacecraft are known with initial estimation errors assumed zero-mean with
given state estimation error covariance, and uncertainty in the environment models (namely, the
gravity) is assumed.

Navigation algorithms based on extended Kalman filter architectures are model-based. Since
this paper focuses on the navigation algorithms themselves, our attention is on the environment and
sensor models employed in the EKF and not on the high-fidelity models that might be deployed in
the various numerical simulations to model the true state history of the spacecraft and to generate
the simulated measurements. The models of the translational and rotational dynamics of the
lander within the EKF are key to accurately predicting the motion of the spacecraft. Furthermore,
without an accurate measure of the non–gravitational acceleration and the spacecraft angular
velocity as provided by an accelerometer/gyro package, the translational and rotational dynamics
models would not be capable of supporting precision landing. The navigation algorithm must also
possess accelerometer and gyro models. Also of interest in precision landing is the location of the
landing site. In performing precision descent-to-landing navigation, it is necessary to be able to
accurately predict the location of the landing site, accounting for the presence of map tie errors. In
addition to the dynamical models describing translation and rotation of the lander, it is necessary
to formulate the dynamics of the estimation errors. The estimation errors represent the differences
between the true spacecraft state (position, velocity, and attitude) and the navigation provided
estimated state. Other error dynamics associated with systematic errors are also included in the
development.

A. Organization of the Paper

The organization of this paper is as follows: The descent-to-landing scenario and associated refer-
ence frames are presented in Section II. This is followed in Section III by an overview of the basic
structure of the extended Kalman filter (EKF). The necessary dynamics modeling, including a de-
scription of the nonlinear equations, a treatment of the linearized error equations, and a description
of the modeling of accelerometers, gyros, and a generic landing site are presented in Section IV.
The proposed EKF sensor models are presented in Section VI. The models that are implemented
in the filtering algorithms are presented in Section VII along with some notes on implementation
issues, such as IMU thresholding and residual editing. A summary of the recommendations for
preparation for implementation in the Morpheus lander is presented along with a description of
the filter implementation as it was realized for the Morpheus flights is given in Section ??.

B. Mathematical Notation

The following notation is used throughout for variables:

− Scalar quantities are given by non-bold lowercase and uppercase symbols, such as: a, A, γ,
and Γ.

− Vector quantities are given by bold lowercase symbols, such as: a and γ.
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− Matrix quantities are given by bold uppercase symbols, such as: A and Γ.

− Quaternions are given by bold lowercase symbols with overbars. Furthermore, the vector part
of the quaternion is given by the same symbol in bold with no overbar and the scalar part of
the quaternion is given by the same symbol in non-bold with no overbar. The magnitude of
the quaternion is given the same symbol as the quaternion, but non-bold and retaining the
overbar.

q̄ =

[

q

q

]

and q̄ = ‖q̄‖ (1)

The expected value of a variable is denoted by E {·}. The vector or matrix two-norm is denoted
by ‖ · ‖. The set of all real numbers is represented by R, such that an n-dimensional space of real
numbers is R

n and a matrix which has n-rows and m-columns of real numbers is said to be in
R

n×m.9 The Dirac delta is represented as δ(t− τ) and is defined via the integral

∫

∞

−∞

f(t)δ(t− τ)dτ = f(τ), (2)

for any real-valued function f(t) that is continuous at t = τ . It is noted that the Dirac delta is
zero for all t 6= τ . The somewhat similar Kronecker delta is represented as δij , and is defined such
that

δij =

{

1 i = j

0 i 6= j
. (3)

The transpose is denoted with a superscript “T” and the inverse by a superscript “−1.” Further-
more, the superscripts “−” and “+” represent a priori and a posteriori values (i.e. values which
immediately precede and succeed a measurement update). A quantity which is expressed in a
particular frame is given a lowercase symbol in the superscript to denote in which it is represented.
The hat accent ( ˆ ) is used to denote an estimated quantity, and the dot accent ( ˙ ) is used to
denote a temporal derivative. The inner (or dot) produce is denoted by ⊙. The cross product
matrix, denoted by [·×], is such that a×b = [a×]b, where a,b ∈ R

3. In terms of the components
of a, the cross product matrix, [a×], is

[a×] =







0 −a3 a2

a3 0 −a1

−a2 a1 0






. (4)

The purely off-diagonal symmetric matrix, [a |×|] and the diagonal matrix [ar] are given by

[a |×|] =







0 a3 a2

a3 0 a1

a2 a1 0






and [ar] =







a1 0 0

0 a2 0

0 0 a3






, (5)

respectively. Furthermore, note that for any a,b ∈ R
3 the following properties hold

[a×]b = − [b×]a, [a |×|]b = [b |×|] a, and [ar]b = [br] a. (6)

Given the two reference frames, denoted by the a-frame and the b-frame, the transformation matrix
which maps vectors from the a-frame to the b-frame (or equivalently expresses the relative attitude
of the a-frame with respect to the b-frame) is given as Tb

a. Equivalently, the quaternion which
relates the a-frame to the b-frame is given as q̄b

a.

II. Descent-to-Landing Scenario and Reference Frames

A. Descent-to-Landing Scenario

A schematic representation of the descent-to-landing scenario is shown in Fig. 1 that illustrates
the thrust-coast-thrust engine configuration, the nominal and map tie corrupted landing site and
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surface features, a measurement of spacecraft attitude, and a measurement of position via process-
ing of an image of the planet surface. The descent-to-landing begins in a parking orbit about the
planet or on a direct entry trajectory. The descent trajectory is a thrust-coast-thrust trajectory.
The first thrust phase is a de-orbit maneuver designed to lower the orbit periapse where the landing
sequence is initiated. Once the descent has been initiated, the spacecraft enters a coast phase until
it reaches the orbit periapsis. After the coast phase, the braking burn occurs near periapse and
the final descent maneuver nulls the remaining vehicle velocity to achieve a soft landing. As the
trajectory is progresses, measurements of altitude, relative velocity, attitude (from a star camera),
and position (from a terrain camera, which is subject to map tie error) are processed. A schematic
representation of the descent-to-landing scenario, shown in Fig. 1, illustrates the thrust-coast-
thrust engine configuration, the nominal and map tie corrupted landing site and surface features,
a measurement of spacecraft attitude, and a measurement of position via processing of an image
of the planet surface.
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Figure 1. Schematic Descent-to-Landing Scenario

B. Reference Frames

Five basic classes of reference frames are considered: a planet-centered inertial frame, a planet-
centered, planet-fixed reference frame, a planet-surface, planet-fixed reference frame, a spacecraft
body reference frame, and various spacecraft sensor reference frames.

1. Planet-Centered Inertial Reference Frame

The inertial frame (denoted by i) is taken to be the J2000 reference frame centered at the celestial
body (at the center of mass of the body). The J2000 reference frame is defined via the FK5 star
catalog with a standard epoch defined as 1.5 January 2000, or 12 p.m. (noon) on January 1st 2000
in the Barycentric Dynamical Time (TDB) time scale.2 The TDB time scale is a form of atomic
time which allows Newtonian physics, corrected for general relativity, to be followed. The J2000
frame will serve as the base frame to which all other frames are related, which is consistent with
the PDS Standards Reference.3 The J2000 frame is known as the planet centered inertial (PCI)
frame.

The stellar reference frame (denoted by sr) is the frame in which the right ascension and
declination of the set of stars is written. Typically, stellar reference frame is not aligned with
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the J2000 reference frame, but is an inertial reference frame. The difference between the stellar
reference frame and the J2000 inertial reference frame is a known constant transformation.

2. Planet-Centered, Planet-Fixed Reference Frame

There are two methods that we can utilize to compute the transformation from the planet-centered,
planet-fixed (PCPF) reference frame (denoted by f) to the PCI reference frame, denoted by T

f
i , or

equivalently by the quaternion q̄
f
i . The first method mplements the mathematical model provided

by the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements
of the Planets and Satellites2 within the EKF algorithm. The north pole of the body is defined to
be the pole of rotation which lies on the north side of the invariable plane of the solar system and
is specified by its right ascension and its declination. The remaining required angle specifies the
ephemeris position of the prime meridian. The mathematical models of these angles are specified in
Archinal, et al.2 To validate the implementation, the implemented PCPF frame can be compared
to the same frame as implemented in the SPICE14 system. For example, our analysis of the lunar-
center, lunar-fixed (LCLF) reference frame accuracy relative to the SPICE computation showed
that error angle between the frames is found to be on the order of XX arc sec and that unit
directions of the inertial axes at the surface of the Moon resulted in maximum norm of the position
differences of less than 6µm.

The second method uses an i-load initial transformation of the PCPF reference frame to the
PCI reference frame at a given epoch (usually the start of the simulation or the initiation of
the descent-to-landing trajectory) and then continuously updates the transformation employing a
single rotation about the planet spin axis. This represents the simplest model for implementation
in the EKF. In both cases, we assume that the transformation, Tf

i (t), is known exactly–it is not a
source of uncertainty.

3. Planet Surface Fixed Reference Frame

The planet surface fixed reference frame (PSF) is a reference frame (denoted by s) fixed to a point
on the planet surface. This topocentric reference frame is selected such that the unit directions
of the frame point in the east, north, and zenith directions. The frame is fully defined by the
spherical latitude and longitude of the point at which the frame is attached to the surface. Since
the latitude and longitude of the point are defined in a fixed reference system, the PSF reference
frame is defined relative to the PCPF reference frame, denoted by Ts

f .

4. Spacecraft Body and Sensor Reference Frames

The spacecraft body frame (denoted by b) and the spacecraft sensor frames are all frames which
are fixed to and unmoving with respect to the spacecraft. The body frame is a frame which is fixed
along axes of the structure of the spacecraft. The spacecraft body frame is depicted in Fig. 2 by
the unit vector triad {xb,yb, zb}.

The spacecraft sensor frames are centered at each corresponding sensor and are allowed in-
dependent alignments. Each sensor frame is defined by a unit vector triad, as shown in Fig. 2.
Typically, the sensor frame +z-axis is defined to be along the bore of the sensor and the remaining
axes span the plane perpendicular to the bore direction. Since both the spacecraft body frame and
the spacecraft sensor frames are fixed to and unmoving with respect to the body, it is assumed
that the relative orientation of each sensor frame with respect to the body frame is known via cal-
ibration and testing. The sensor reference frames considered include the IMU case reference frame
denoted by c, the velocimeter frame denoted by v, the altimeter reference frame denoted by a, the
star camera reference frame denoted by sc, the terrain relative navigation reference frame denoted
by t, and the hazard relative navigation reference frame denoted by h. Onboard Morpheus, the
sensor suite did not include a star camera or a terrain relative navigation sensor, hence these are
not illustrated in Fig. 2. A summary of the designations of the reference frames considered is given
in Table 1.
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Figure 2. Spacecraft Body Fixed and Sensor Fixed Reference Frames. (a) front view, (b) rear view.

Table 1. Reference Frame Designations

Designation Description

i inertial

sr stellar

f planet-centered, planet-fixed

s planet surface fixed

b spacecraft body fixed

c IMU case

v velocimeter

a altimeter

sc star camera

t terrain relative navigation

h hazard relative navigation

III. Navigation Algorithm

When the system dynamics and sensors can be described by linear models (possibly time-
varying) and the measurement and process noises can be described by zero-mean, white noise
processes, then the Kalman filter can be shown to be the optimal linear filter in terms of minimizing
the mean-squared state estimation error.5 If additionally, the measurement and process noises can
be described by zero-mean, Gaussian white noise processes, the Kalman filter is the optimal filter.
However, in our case, the underlying spacecraft entry dynamics and the sensors are inherently
time-varying and nonlinear. The continuous-discrete extended Kalman filter (EKF), used as the
primary navigation algorithm, is a direct extension of the optimal linear Kalman filter in the
nonlinear setting (see, for example, Gelb4 for more details). The EKF has long been the workhorse
of space-based navigation systems, dating back to the early days of the Apollo missions. The EKF is
a recursive data processing algorithm that is capable of asynchronous fusion of measurements from
various sensors, with potentially time-varying noise characteristics. Moreover, the EKF utilizes
prior knowledge regarding the state of the system and the error statistics associated with the state
estimate. Additionally, the EKF is model-dependent, thus making accurate modeling of the sensors
and the environment a key factor in the successful implementation. In order to accommodate the
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nonlinearities of the system the EKF utilizes approximations based on Taylor series expansions of
the nonlinear system dynamics and sensor models along the current estimated trajectory. With
proper tuning and analysis, the EKF can provide a reasonably accurate estimate at each point
along the trajectory. Tuning of the EKF can be assisted through use of Monte Carlo analysis that
provides a means for computing the expected state estimation error covariance which can then be
compared to the EKF state estimation error covariance. A well-tuned EKF will possess a state
estimation error covariance that closely matches the sampled Monte Carlo covariance.

A. EKF Architecture

The nonlinear system model is assumed to be of the form

ẋ(t) = f(x(t)) +M(t)w(t), (7)

where x(t) ∈ R
n is the state of the system, f(x(t)) ∈ R

n is the sufficiently differentiable non-
linear system model, and w(t) ∈ R

p is a zero-mean, white-noise process with E {w(t)} = 0 and
E
{

w(t)wT(τ)
}

= Qs(t)δ(t − τ) where M(t) ∈ R
n×p is the process noise mapping matrix, and

Qs(t) = QT
s (t) ≥ 0 ∈ R

p×p, ∀t, is the process noise spectral density. The nonlinear measurement
model is assumed to be of the form

yk = hk(xk) + ηk (8)

where the subscript “k” denotes a discrete time measurement at time t = tk, hk(xk) ∈ R
m is

the sufficiently differentiable nonlinear measurement model evaluated at the state xk = x(tk),
and the measurement noise ηk ∈ R

m is a zero-mean, white-noise sequence with E {ηk} = 0 and
E
{

ηkη
T
j

}

= Rkδkj where Rk = RT
k > 0 ∈ R

m×m, ∀tk. Additionally, it is assumed that the

process noise and the measurement noise are not correlated in time, hence E
{

w(t)ηT
k

}

= 0, ∀t, tk.
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The EKF is a continuous-discrete algorithm, as illustrated in Fig. 4. The two stages are referred
to as propagation and update. The propagation stage continues until one or more measurements
becomes available. Once the update is completed, the propagation begins again. The state estimate
is denoted by x̂(t), the state estimation error is defined as e(t) := x(t) − x̂(t), and the state
estimation error covariance is P(t) := E

{

e(t)eT(t)
}

. The state estimate and state estimation

error covariance just prior to the update are denoted by x̂−

k , and P−

k , respectively, and just after
the update by x̂+

k , and P+
k , respectively. Note that the EKF is an unbiased filter, therefore, we

assume that E {e(t)} = 0. For example, P−

k = E
{

e−k e
−T
k

}

and P+
k = E

{

e+k e
+T
k

}

. The objective

of the EKF is to minimize the mean-square estimation error J = TrP+
k , ∀tk.

B. State Estimate and State Estimation Error Covariance Propagation

Consider the propagation of state estimate and the state estimation error covariance between
measurements during the time interval t ∈ {tk−1, tk}. The EKF propagation equations are

˙̂x(t) = f(x̂(t)) (9a)

Φ̇(t, tk−1) = F(x̂(t))Φ(t, tk−1) (9b)

Q̇(t) = F(x̂(t))Q(t) +Q(t)FT(x̂(t)) +M(t)Qs(t)M
T(t) (9c)

where tk−1 ≤ t ≤ tk, Φ(t, tk−1) ∈ R
n×n is the state transition matrix mapping the state from tk−1

to t and

F(x̂(t)) :=
∂f(x(t))

∂x(t)

∣

∣

∣

∣

x(t)=x̂(t)

∈ R
n×n, (10)

with the initial conditions x̂(tk−1) = x̂+
k−1, Φ(tk−1, tk−1) = I, and Q(tk−1) = 0. At tk, we

have x̂−

k = x̂(tk), Φk = Φ(tk, tk−1), Qk = Q(tk), and P−

k = P(tk). After integration, the state
estimation error covariance is mapped forward via

P−

k = ΦkP
+
k−1Φ

T
k +Qk. (11)

C. State Estimate and State Estimation Error Covariance Update

The state estimate and the state estimation error covariance update are calculated via

x̂+
k = x̂−

k +Kk

(

yk − hk(x̂
−

k )
)

(12a)

P+
k =

[

I−KkHk(x̂
−

k )
]

P−

k

[

I−KkHk(x̂
−

k )
]T

+KkRkK
T
k (12b)

where the Kalman gain is computed via

Kk = P−

k H
T
k (x̂

−

k )W
−1
k , (13)

where Wk is the measurement residual covariance matrix given by

Wk = Hk(x̂
−

k )P
−

k H
T
k (x̂

−

k ) +Rk. (14)

Update Update Update

Time

Altimeter, Velocimeter, Star Camera, TRN, & HRN

Propagation Propagation Propagation

t
k-1

t
k

x
_

k-1
P

_

k-1
,

x+
k-1
P

+
k-1

,

x
_

k
P

_

k
,

x+
k
P

+
k

,

IMU

^

^

^

^

Figure 4. EKF timeline.
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and where Hk(x̂
−

k ) is the measurement sensitivity matrix defined to be

Hk(x̂
−

k ) =
∂hk(xk)

∂xk

∣

∣

∣

∣

xk=x̂
−

k

∈ R
m×n. (15)

IV. Dynamics Modeling

Extended Kalman filter navigation algorithms are model-based. This implies that the models
of the translational and rotational dynamics of the lander are key to accurately predicting the
motion of the spacecraft. Furthermore, without an accurate measure of the non–gravitational
acceleration and the spacecraft angular velocity as provided by an accelerometer/gyro package, the
translational and rotational dynamics models would not be capable of supporting precision landing.
The navigation algorithm must also possess accelerometer and gyro models. Also of interest in
precision landing is the location of the landing site. In performing precision descent-to-landing
navigation, it is necessary to be able to accurately predict the location of the landing site, accounting
for the presence of map tie errors. In addition to the dynamical models describing translation and
rotation of the lander, it is necessary to formulate the dynamics of the estimation errors. The
estimation errors represent the differences between the true spacecraft state (position, velocity,
and attitude) and the navigation provided estimated state. Other error dynamics associated with
systematic errors are also included in the development.

The total acceleration of the vehicle is comprised of accelerations due to conservative forces (e.g.,
gravity), and accelerations due to non-conservative forces. The non-conservative forces acting upon
the vehicle may include, but are not necessarily limited to, forces due to engine thrust and forces due
to atmospheric interaction with the vehicle. An IMU consisting of a set of accelerometers and gyros
senses the linear non-gravitational acceleration and the rotational rate of the vehicle, respectively.
We navigate the IMU navigation base (rather than the center-of-gravity). The translational and
rotational dynamics are

ṙiimu(t) = vi
imu(t) (16a)

v̇i
imu(t) = Ti

f (t)ag(r
f
cg(t)) +Ti

b(q̄
b
i (t))T

b
ca

c
ng(t) (16b)

˙̄qb
i (t) =

1

2
ω̄b

b/i(t)⊗ q̄b
i (t) (16c)

where riimu(t) and vi
imu(t) are the position and velocity, respectively, of the IMU represented in

the inertial reference frame, q̄b
i(t) represents the orientation of the spacecraft body fixed reference

frame with respect to the inertial reference frame, and

rfcg(t) = T
f
i (t)r

i
imu(t) +T

f
i (t)T

i
b(q̄

b
i (t))r

b
cg/imu(t) (17a)

ω̄b
b/i(t) =

(

Tb
cω

c
b/i(t)

0

)

, (17b)

where the non-gravitational acceleration, acng(t), and body rate, ωc
b/i(t), are sensed by the IMU

in the IMU case reference frame, and ag(r
f
cg(t)) is the gravitational acceleration represented in

the planet-centered, planet-fixed reference frame, rbcg/imu(t) is the position of the center-of-gravity
relative to the IMU represented in the body fixed reference frame. The location of the IMU relative
to the center-of-gravity is given by a nominal position, denoted by r̄bcg/imu(t), in the body fixed

reference frame and computed externally to the navigation system (and likely time-varying as fuel
is expended during descent) and a deviation from the nominal position, denoted by ∆rbcg/imu(t)
such that

rbcg/imu(t) = r̄bcg/imu(t) + ∆rbcg/imu(t). (18)

Also, we have Ti
b(q̄

b
i (t)) =

[

Tb
i(q̄

b
i (t))

]T
where

Tb
i (q̄

b
i (t)) = I3×3 − 2qbi (t)

[

qb
i (t)×

]

+ 2
[

qb
i (t)×

]2
. (19)

The transformation matrices Ti
f (t) and Tc

b are assumed known.
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A. Gravity Modeling

There are various possibilities for modeling the gravitational acceleration, ag(r
f
cg(t)) in Eq. (16).

Typically, we model the primary gravitational body using point-mass approximations and zonal
harmonic approximations.6–8, 10 The simplest model assumes a spherical planet, and

ag(r
f
cg(t)) = −

µ

r3cg(t)
rfcg(t), (20)

where rcg(t) = ||rfcg(t)|| ∈ R and µ is the gravitational parameter. The associated gravity gradient
matrix is

G(rfcg(t)) =
µ

r5cg(t)

(

3rfcg(t)(r
f
cg(t))

T
− r2cg(t)I3×3

)

∈ R
3×3. (21)

The gravity gradient matrix is used in propagation of the estimation error equations.

B. Inertial Measurement Unit

1. Accelerometers

The IMU measurement of the non-gravitational acceleration is corrupted by errors due to
nonorthogonality and misalignment of the axes, Γa ∈ R

3×3, errors due to scale-factor uncertainties,
Sa ∈ R

3×3, random biases, ba ∈ R
3, and noise, ηa(t) ∈ R

3. Incorporating these error sources,
the measured non-gravitational acceleration, acng,m(t) ∈ R

3, can be written in terms of the true
non-gravitational acceleration, acng(t) ∈ R

3, as11, 12

acng,m(t) = (I3×3 + Γa) (I3×3 + Sa)
(

acng(t) + ba + ηa(t)
)

, (22)

where

Γa :=







0 γaxz
−γaxy

−γayz
0 γayx

γazy
−γazx

0






, Sa :=







sax
0 0

0 say
0

0 0 saz






,

acng,m(t) :=







acmx
(t)

acmy
(t)

acmz
(t)






, acng(t) :=







acx(t)

acy(t)

acz(t)






,ba :=







bax

bay

baz






,ηa(t) :=







ηax
(t)

ηay
(t)

ηaz
(t)






,

and where ηa(t) is a zero-mean, white noise process with covariance

E
{

ηa(t)η
T
a (τ)

}

= Qaδ(t− τ) ∈ R
3×3 ,

and Qa = QT
a > 0. To first-order, the non-gravitational acceleration in Eq. (26) may be written

in terms of the measured non-gravitational acceleration and the model parameters as

acng(t) = acng,m(t)−M1(a
c
ng,m(t))γa −M2(a

c
ng,m(t))sa − ba − ηa(t) . (23)

where

M1(a
c
ng,m(t)) :=







−acmz
(t) acmy

(t) 0 0 0 0

0 0 acmz
(t) −acmx

(t) 0 0

0 0 0 0 −acmy
(t) acmx

(t)






,

M2(a
c
ng,m(t)) :=







acmx
(t) 0 0

0 acmy
(t) 0

0 0 acmz
(t)






,γa :=





















γaxy

γaxz

γayx

γayz

γazx

γazy





















, and sa :=







sax

say

saz






.
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We model ba, γa, and sa as unknown constants with

ḃa = 0, γ̇a = 0, ṡa = 0, (24)

and E {ba} = 0, E {γa} = 0, E {sa} = 0, E
{

bab
T
a

}

= Pba
= PT

ba
∈ R

3×3, E
{

sas
T
a

}

= Psa =

PT
sa

∈ R
3×3, and E

{

γaγ
T
a

}

= Pγa
= PT

γa
∈ R

6×6, and where Pba
> 0, Psa > 0, and Pγa

> 0 are
given. In the EKF implementation, we often model the unknown constants as random constants
driven by zero-mean, white noise processes with given process noise strength or as exponentially
correlated random variables with given time constants and process noise strengths (see Gelb4). For
example, the dynamics of the unknown constants in Eq. (24) can be modeled as

ḃa(t) = ηba(t), γ̇a(t) = ηγa
(t), ṡa(t) = ηsa(t), (25)

where E
{

ηba(t)
}

= 0, E
{

ηγa
(t)
}

= 0, E
{

ηsa(t)
}

= 0, for ∀t, E
{

ηba(t)η
T
ba
(τ)
}

= Qba
δ(t − τ),

E
{

ηsa(t)η
T
sa(τ)

}

= Qsaδ(t− τ), and E
{

ηγa
(t)ηT

γa
(τ)
}

= Qγa
δ(t− τ), for ∀t, τ and where Qba

=

QT
ba

∈ R
3×3, Qsa = QT

sa
∈ R

3×3, Qγa
= QT

γa
∈ R

6×6, where Qba
≥ 0, Qsa ≥ 0, and Qγa

≥ 0 are
given.

2. Gyros

The IMU measurement of the angular velocity of the spacecraft is corrupted by errors due to
nonorthogonality and misalignment of the axes, Γg ∈ R

3×3, errors due to scale-factor uncertainties,
Sg ∈ R

3×3, random biases, bg ∈ R
3, and noise, ηg(t) ∈ R

3. Incorporating these error sources, the
measured angular velocity, ωc

b/i,m(t) ∈ R
3, can be written in terms of the true angular velocity,

ωc
b/i(t) ∈ R

3, as

ωc
b/i,m(t) = (I3×3 + Γg) (I3×3 + Sg)

(

ωc
b/i(t) + bg + ηg(t)

)

, (26)

where

Γg :=







0 γgxz
−γgxy

−γgyz 0 γgyx
γgzy −γgzx 0






, Sg :=







sgx 0 0

0 sgy 0

0 0 sgz






,

ωc
b/i,m(t) :=







ωc
mx

(t)

ωc
my

(t)

ωc
mz

(t)






,ωc

b/i(t) :=







ωc
x(t)

ωc
y(t)

ωc
z(t)






,bg :=







bgx
bgy

bgz






,ηg(t) :=







ηgx(t)

ηgy (t)

ηgz (t)






,

and where ηg(t) is a zero-mean, white noise process with covariance

E
{

ηg(t)η
T
g (τ)

}

= Qgδ(t− τ) ∈ R
3×3 ,

and Qg = QT
g > 0 is given. To first-order, the angular velocity in Eq. (26) may be written in terms

of the measured angular velocity and the model parameters as

ωc
b/i(t) = ω

c
b/i,m(t)−N1(ω

c
b/i,m(t))γg −N2(ω

c
b/i,m(t))sg − bg − ηg(t) . (27)

where

N1(ω
c
b/i,m(t)) :=







−ωc
mz

(t) ωc
my

(t) 0 0 0 0

0 0 ωc
mz

(t) −ωc
mx

(t) 0 0

0 0 0 0 −ωc
my

(t) ωc
mx

(t)






,

N2(ω
c
b/i,m(t)) :=







ωc
mx

(t) 0 0

0 ωc
my

(t) 0

0 0 ωc
mz

(t)






,γg :=





















γgxy

γgxz

γgyx
γgyz
γgzx
γgzy





















, and sg :=







sgx

sgy
sgz






.
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We model bg, γg, and sg as unknown constants with

ḃg = 0, γ̇g = 0, and ṡg = 0, (28)

and E {bg} = 0, E
{

γg

}

= 0, E {sg} = 0, and E
{

bgb
T
g

}

= Pbg
= PT

bg
∈ R

3×3, E
{

sgs
T
g

}

= Psg =

PT
sg

∈ R
3×3, and E

{

γgγ
T
g

}

= Pγg
= PT

γg
∈ R

6×6 and where Pbg
> 0, Psg > 0, and Pγg

> 0 are

given. As with the accelerometer unknown constants in Eq. (24), we can model the unknown gyro
constants in Eq. (28) as random constants driven by zero-mean, white noise processes with given
process noise strength or as exponentially correlated random variables with given time constants
and process noise strengths.

C. Landing Site

The nominal landing site position in the inertial reference frame is

rils(t) = Ti
f (t)r

f
ls, (29)

where rfls is the fixed position of the landing site in the planet-centered, planet-fixed reference frame
and Ti

f (t) is the known transformation matrix from the planet-centered, planet-fixed reference
frame to the inertial reference frame. The planet is modeled as an oblate spheroid (or ellipsoid),
and therefore the geoodetic coordinate system is used to represent the landing site as6, 8

r
f
ls =







(N + h) cosφ cosλ

(N + h) cosφ sinλ

(N(1− e2) + h) sinφ






, (30)

where h is the altitude above the reference ellipsoid, φ is the geoodetic latitude, λ is the longitude,
e is the first eccentricity, and N is the radius of curvature in the prime vertical given by

N =
Re

√

1− e2 sin2 φ
, (31)

where Re is the equatorial radius. While the surface features may be well-known relative to one
another, the precise location of surface features (including the desired landing site) in the planet-
centered, planet-fixed reference frame may possess map-tie errors, and therefore the location of the
surface point as represented in the inertial reference frame possesses uncertainties. We model the
true altitude, geodetic latitude, and longitude in Eq. (30) and Eq. (31) as

h = hls + h∆, φ = φls + φ∆, and λ = λls + λ∆, (32)

where the nominal altitude above the reference ellipsoid, geoodetic latitude, and longitude of the
landing site, denoted by hls, φls, and λls, respectively, are assumed known a priori, and the
associated map-tie errors are denoted by h∆, φ∆ and λ∆, respectively. We model the map-tie
errors are unknown constants with

ḣ∆ = 0, φ̇∆ = 0, λ̇∆ = 0, (33)

where E {h∆} = 0, E {φ∆} = 0, E {λ∆} = 0, and E
{

h2
∆

}

= Ph∆
> 0 ∈ R, E

{

φ2
∆

}

= Pφ∆
> 0 ∈ R,

and E
{

λ2
∆

}

= Pλ∆
> 0 ∈ R are given.

D. EKF State Dynamics Model

The state dynamics model in the navigation algorithm follows from Eq. (16)–Eq. (32). The
EKF state dynamics are given by

˙̂riimu(t) = v̂i
imu(t) (34a)

˙̂vi
imu(t) = Ti

f (t)ag(r̂
f
cg(t)) +Ti

b(ˆ̄q
b
i (t))T

b
câ

c
ng(t) (34b)

˙̄̂qb
i(t) =

1

2
ˆ̄ωb
b/i(t)⊗ ˆ̄qb

i(t) (34c)

˙̂
ba = 0, ˙̂γa = 0, ˙̂sa = 0,

˙̂
bg = 0, ˙̂γg = 0, ˙̂sg = 0,

˙̂
h∆ = 0,

˙̂
φ∆ = 0,

˙̂
λ∆ = 0, (34d)
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where

r̂fcg(t) = T
f
i (t)r̂

i
imu(t) +T

f
i (t)T

i
b(ˆ̄q

b
i (t))r̂

b
cg/imu(t) (35a)

r̂bcg/imu(t) = r̄bcg/imu(t) + ∆r̂bcg/imu(t) (35b)

Tb
i (ˆ̄q

b
i (t)) = I3×3 − 2q̂bi (t)

[

q̂b
i (t)×

]

+ 2
[

q̂b
i (t)×

]2
(35c)

ˆ̄ωb
b/i(t) =

(

Tb
cω̂

c
b/i(t)

0

)

(35d)

and

âcng(t) = acng,m(t)−M1(a
c
ng,m)γ̂a −M2(a

c
ng,m)ŝa − b̂a (36a)

ω̂
c
b/i(t) = ωc

b/i,m(t)−N1(ω
c
b/i,m)γ̂g −N2(ω

c
b/i,m)ŝg − b̂g (36b)

V. Estimation Error Dynamics

A. Attitude Estimation Errors

Define the attitude estimation error as

δq̄b
i (t) := q̄b

i(t)⊗
[

ˆ̄qb
i (t)
]−1

. (37)

Taking the time derivative of the error quaternion in Eq. (37), substituting ˙̄qb
i(t) and ˙̄̂qb

i(t) from
Eq. (16c) and Eq. (34c) respectively, using the definition of quaternion multiplication, and re-
arranging yields

δ ˙̄qb
i (t) =

1

2

[

δqbi (t)δω
b
b/i(t)− 2ω̂b

b/i(t)× δqb
i (t)− δωb

b/i(t)× δqb
i(t)

−δωb
b/i(t)⊙ δqb

i (t)

]

, (38)

where δωb
b/i(t) := ωb

b/i(t) − ω̂
b
b/i(t) = Tb

c

(

ωc
b/i(t)− ω̂

c
b/i(t)

)

. Assuming small attitude errors and

neglecting second-order terms, Eq. (38) reduces to

δq̇b
i (t) = −ω̂b

b/i(t)× δqb
i (t) +

1

2
δωb

b/i(t) (39)

δq̇bi (t) = 0 .

Define δbg := bg − b̂g, δsg := sg − ŝg, and δγg := γg − γ̂g. Computing δωb
b/i(t) using Eq. (27)

and Eq. (36b) yields

δωb
b/i(t) = −Tb

c

[

N1(ω
c
b/i,m(t))δγg +N2(ω

c
b/i,m(t))δsg + δbg + ηg(t)

]

. (40)

Substituting Eq. (40) into Eq. (39) yields

δq̇b
i (t) = −

[

Tb
c(ω

c
b/i,m(t))×

]

δqb
i (t) −

1

2
Tb

c

(

N1(ω
c
b/i,m(t))δγg (41)

+ N2(ω
c
b/i,m(t))δsg + δbg + ηg(t)

)

.

Assuming small attitude error angles, denoted by δα, we have the approximation

δqb
i (t) ≈

1

2
δα(t). (42)

Taking the time-derivative of Eq. (42) and substituting Eq. (41) yields

δα̇(t) = −
[

Tb
cω

c
b/i,m×

]

δα(t)−Tb
c

(

N1(ω
c
b/i,m(t))δγg +N2(ω

c
b/i,m(t))δsg + δbg + ηg(t)

)

. (43)

With the attitude estimation error as in Eq. (37) and the approximation in Eq. (42), we have the
relationship

Ti
b(q̄

b
i (t)) ≈ Ti

b(ˆ̄q
b
i (t))

[

I+ [δα×]

]

. (44)
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B. Position and Velocity Estimation Errors

Define the position estimation error and velocity estimation as δriimu(t) := riimu(t) − r̂iimu(t)
and δvi

imu(t) := vi
imu(t)− v̂i

imu(t), respectively. Taking the time-derivative, using the relationships
in Eq. (16) and Eq. (34), and collecting terms yields

δṙiimu(t) = δvi
imu(t) (45a)

δv̇i
imu(t) = Ti

f (t)
(

ag(r
f
cg(t))− ag(r̂

f
cg(t))

)

+Ti
b(q̄

b
i (t))T

b
ca

c
ng(t)−Ti

b(ˆ̄q
b
i (t))T

b
câ

c
ng(t). (45b)

Expanding the acceleration due to gravity in a Taylor series and keeping the first-order terms
yields the approximation

ag(r
f
cg(t))− ag(r̂

f
cg(t)) ≈ G(r̂fcg(t))δr

f
cg(t), (46)

where the gravity gradient matrix G(rfcg(t)) is given in Eq. (21) and where we define δrfcg(t) :=

rfcg(t)− r̂fcg(t). Note that we implicitly assume that the true gravity has the same functional form
as the model employed in the EKF–in this case, a spherical gravity model. In reality, the true
gravity is significantly more complex; however, this approach has proven to be effective in our
EKF filter implementation. More complex gravity models can certainly be employed with the
associated additional complexity in the state and state estimation error covariance propagation.
Using Eq. (17), Eq. (18), Eq. (35a), and the definition δrbcg/imu(t) := ∆rbcg/imu(t) −∆r̂bcg/imu(t),
it can be shown that

δrfcg(t) = T
f
i (t)δr

i
imu(t)−T

f
i (t)T

i
b(ˆ̄q

b
i (t))

[

r̄bcg/imu×
]

δα(t) +Ti
b(ˆ̄q

b
i (t))δr

b
cg/imu(t) . (47)

Then from Eq. (27), Eq. (36), Eq. (44) it follows that to first-order we have

Ti
b(q̄

b
i (t))T

b
ca

c
ng(t) − Ti

b(ˆ̄q
b
i (t))T

b
câ

c
ng(t) = −Ti

b(ˆ̄q
b
i (t))

[

Tb
ca

c
ng,m(t)×

]

δα(t) (48)

−Ti
b(ˆ̄q

b
i (t))T

b
c

(

δba(t)−M1(a
c
ng,m(t))δγa(t)−M2(a

c
ng,m(t))δsa(t)− ηa(t)

)

− G(r̂fcg(t))T
i
b(ˆ̄q

b
i (t))δr

b
cg/imu(t),

where δba = ba − b̂a, δsa = sa − ŝa, and δγa = γa − γ̂a. Substituting Eq. (47) and Eq. (48) into
Eq. (45b) yields

δv̇i
imu(t) = G(r̂fcg(t))δr

i
imu(t)−G(r̂fcg(t))T

i
b(ˆ̄q

b
i (t))δr

b
cg/imu(t)

−
[

Ti
b(ˆ̄q

b
i (t))

[

Tb
ca

c
ng,m(t)×

]

+G(r̂fcg(t))T
i
b(ˆ̄q

b
i (t))

[

r̄bcg/imu×
]]

δα(t) (49)

−Ti
b(ˆ̄q

b
i (t))T

b
c

(

δba(t) +M1(a
c
ng,m(t))δγa(t) +M2(a

c
ng,m(t))δsa(t) + ηa(t)

)

.

VI. Sensor Modeling

The EKF is a model-based algorithm requiring models of the sensors. In general, there are two
classes of sensor models required for high-fidelity analysis of the integrated guidance, navigation,
and control (IGN&C) system. These are (1) high-fidelity models to support the high-fidelity
analysis in simulation, and (2) sensor models for the navigation algorithm. This paper is concerned
only with sensor models for the navigation algorithm. To that end, a navigation sensor model
includes the following:

1. A mathematical model represented by a nonlinear equation(s) as a function of the states of
the system (such as position, velocity, attitude, map tie, etc.).

2. A measurement mapping matrix comprised of the partial derivatives (of the model above)
evaluated at the most recent state estimate.

3. An error model comprised of random noise and systematic errors, including representative
values of the uncertainty in the various error sources.

The sensors currently under consideration are:
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1. Altimeter

2. Velocimeter

3. Star camera

4. Terrain relative navigation (TRN)

5. Hazard relative navigation (HRN)

The models presented here represent the class of sensors that might be used to support precision
EDL. Not all sensors will likely be used in all phases of EDL. For example, for the Morpheus
project, the star camera and terrain camera (TRN) were not employed at any time. Additionally,
the models used in the EKF are dependent on the actual sensors selected. For example, there are
various possibilities for the landing altimeter (first return, slant range, etc.). This paper presents
an illustrative set of models.

A. Altimeter

The altimeter is modeled as

hsph,k = rialt,k − rgrd,k + balt + ηalt,k, (50)

where rialt,k = ‖riimu,k+Ti
b(q̄

b
i,k)r

b
alt/imu‖, rgrd,k is the distance of the sub-spacecraft surface point

from the center of the planet, rbalt/imu is assumed known, balt is the altimeter sensor bias, and

ηalt,k is a zero-mean, white noise sequence with E {ηalt,k} = 0, ∀tk and E
{

η2alt,k

}

= Ralt,kδk,j ∈ R,

Ralt,k > 0, ∀tk. We often model the altimeter bias, balt, as a random constant with

ḃalt = 0, (51)

where E {balt} = 0 and E
{

b2alt
}

= Pbalt
> 0 ∈ R. As with other biases (e.g., IMU), we might employ

a random constants model driven by zero-mean, white noise processes with given process noise
strength or as exponentially correlated random variables with given time constants and process
noise strengths (see Gelb4). The are various ways to model rgrd,k in the EKF. For example, we
might model the planet as a sphere and rgrd,k would be the spherical radius of the planet plus a
term to account for the local surface topography (possibly the mean height of the planet surface
above the spherical radius) plus an additional time-varying term to account for deviations from
the mean height and for small to medium surface features (e.g., rocks and small craters).

The associated estimate of the altimeter measurement is computed via

ĥsph,k = r̂ialt,k − r̂grd,k + b̂alt, (52)

where r̂ialt,k = ‖r̂iimu,k+Ti
b(ˆ̄q

b
i,k)r

b
alt/imu‖, r̂grd,k is an estimate of the distance of the sub-spacecraft

surface point from the center of the planet, and b̂alt is the altimeter sensor bias estimate. Defining
δhsph,k := hsph,k − ĥsph,k, it follows that to first-order we have

δhsph,k =
r̂i

T

alt,k

r̂ialt,k

(

δriimu,k −Ti
b(ˆ̄q

b
i,k)[r

b
alt/imu×]δαk

)

− δrgrd,k + δbalt + ηalt,k, (53)

where r̂ialt,k = r̂iimu,k +Ti
b(ˆ̄q

b
i,k)r

b
alt/imu, δbalt := balt − b̂alt and δrgrd,k := rgrd,k − r̂grd,k.

B. Velocimeter

The velocimeter is modeled via

vv
rel,k = Tv

bT
i
b(q̄

b
i,k)
[

vi
vel,k − ωi

f/i,k × rivel,k

]

+ bvel + ηvel,k (54)
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where

rivel,k = riimu,k +Ti
b(q̄

b
i,k)r

b
vel/imu, vi

vel,k = vi
imu,k +Ti

b(q̄
b
i,k)
(

ωb
b/i,k × rbvel/imu

)

, (55)

rbvel/imu is assumed known, ωi
f/i,k = Ti

f,kω
f
f/i is the angular velocity of the planet-centered, planet-

fixed reference frame of the planet with respect to the inertial reference frame represented in the
inertial reference frame and ωf

f/i is the constant known rotation vector of the planet about the spin

axis, rivel,k and vi
vel,k are the position and velocity of the velocimeter in the inertial reference frame,

respectively, bvel is the velocimeter bias in the velocimeter reference frame, and ηvel,k is a zero-

mean, Gaussian, white-noise sequence with E
{

ηvel,k
}

= 0, ∀tk and E
{

ηvel,kη
T
vel,k

}

= Rvel,kδk,j ∈

R
3×3, Rvel,k > 0, ∀tk. We often model the velocimeter bias, bvel, as a random constant with

ḃvel = 0, (56)

where E {bvel} = 0 and E
{

bvelb
T
vel

}

= Pbvel
> 0 ∈ R

3×3. The estimated relative velocity
measurement is

v̂v
rel,k = Tv

bT
i
b(ˆ̄q

b
i,k)
(

v̂i
vel,k − ωi

f/i,k × r̂ivel,k

)

+ b̂vel, (57)

where

r̂ivel,k = r̂iimu,k +Ti
b(ˆ̄q

b
i,k)r

b
vel/imu, v̂i

vel,k = v̂i
imu,k +Ti

b(ˆ̄q
b
i,k)
(

ω̂
b
b/i,k × rbvel/imu

)

, (58)

With δvv
rel,k := vv

rel,k − v̂v
rel,k, δbvel := bvel − b̂vel, and Eq. (40), it follows that to first-order we

have

δvv
rel,k = − Tv

bT
i
b(ˆ̄q

b
i,k)
([

ωi
f/i,k×

]

δriimu,k − δvi
imu,k

)

−Tv
b

[

[(

ωb
b/i,mk

× rbvel/imu

)

×
]

+ Tb
i (ˆ̄q

b
i,k)
[

ωi
f/i,k×

]

Ti
b(ˆ̄q

b
i,k)
[

rbvel/imu×
]

+
[

Ti
b(ˆ̄q

b
i,k)
(

v̂i
vel − ω

i
f/i,k × r̂ivel

)

×
]

]

δα (59)

+ Tv
b

[

rbvel/imu×
]

Tb
c

(

δbg +N1(ω
c
b/i,mk

)γg +N2(ω
c
b/i,mk

)δsg + ηg

)

+ δbvel + ηvel,

where ωc
b/i,mk

is the measured angular velocity at tk and ωb
b/i,mk

= Tb
cω

c
b/i,mk

.

C. Star Camera

The star camera is modeled via

q̄sc
sr,k = q̄η,k ⊗ q̄sc

b ⊗ q̄b
i,k ⊗ q̄i

sr , (60)

where q̄sc
b and q̄i

sr are known transformations, and q̄η,k is the bias-noise quaternion given by

q̄η,k =











sin

(

θk

2

)

θk

θk

cos

(

θk

2

)











,

where θk = bsc + ηsc,k, θk = ‖θk‖, and ηsc,k is a zero-mean, Gaussian, white-noise sequence with

E
{

ηsc,k
}

= 0, ∀tk and E
{

ηsc,kη
T
sc,k

}

= Rsc,kδk,j ∈ R
3×3, Rsc,k > 0, ∀tk. We often model the

star camera bias, bsc, as a random constant with

ḃsc = 0, (61)

where E {bsc} = 0 and E
{

bscb
T
sc

}

= Pbsc
> 0 ∈ R

3×3.
The estimated star camera quaternion is

ˆ̄qsc
sr,k = ˆ̄qη,k ⊗ q̄sc

b ⊗ ˆ̄qb
i,k ⊗ q̄i

sr . (62)
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where θ̂k = b̂sc. With the definitions δq̄sc
sr,k := q̄sc

sr,k ⊗ ˆ̄qsc−1

sr,k , δq̄b
i,k := q̄b

i,k ⊗ ˆ̄qb−1

i,k , and δq̄η,k :=

q̄η,k ⊗ ˆ̄q−1
η,k, and from Eq. (60) and Eq. (62), it follows that to first-order we have

δq̄sc
sr,k =

[

δqη,k +T(ˆ̄qη,k)T
sc
b δqb

i,k

1

]

. (63)

Assuming small angles and with the definition δbsc := bsc − b̂sc, we have

δqη,k =
1

2
δbsc +

1

2
ηsc,k. (64)

Then with δqb
i,k ≈ 1

2δαk and δqsc
sr,k ≈ 1

2δψk, substituting Eq. (64) into Eq. (63) yields

δψ = T(ˆ̄qη,k)T
sc
b δαk + δbsc + ηsc,k. (65)

D. Hazard Relative Navigation

HRN tracking is comprised of an hazard detection and avoidance (HDA) phase to create a
feature map followed by a navigation phase in which HRN measurements are processed. The
feature map specifies the locations of the key features relative to the corrected intended landing
site (ILS) where the corrected ILS incorporates that latest estimates of the map-tie errors. As
the descent progresses and when the resolution dictates, a new feature map is generated—this
mapping process is invisible to the navigation algorithm except that HRN measurements are not
provided for short periods during the mapping—and the navigation phase continues once the HRN
measurements are again provided. During each navigation phase, we assume that only one feature
is tracked.

The first step in the HDA process is for navigation to provide to the HDA algorithm the current
inertial state estimate for the purpose of locating the HRN sensor with respect to the corrected
ILS. The location of the HRN sensor relative to the corrected ILS is given in the planet-surface,
planet-fixed reference frame and the location of the feature relative to the HRN sensor is given in
the HRN sensor reference frame.

The corrected ILS, represented by r̂
f
ILS in Fig. 6, is given by Eq. (30) where hls, φls, and λls,

respectively, are assumed known a priori, and the associated map-tie errors denoted by ĥ∆, φ̂∆

and λ̂∆, respectively, are estimated before the HDA process starts (likely during the TRN phase).
As depicted in Fig. 6, the estimated location of the HRN sensor relative to the corrected ILS at
t = tj is given by

r̂sILS/HRN,j = −T̂s
f

(

T
f
i,j

(

r̂iIMU,j +Ti
b(ˆ̄q

b
i,j)r

b
HRN/IMU

)

− r̂
f
ILS

)

, (66)

where

T̂s
f =







− sin(λls + λ̂∆) cos(λls + λ̂∆) 0

− sin(φls + φ̂∆) cos(λls + λ̂∆) − sin(φls + φ̂∆) sin(λls + λ̂∆) cos(φls + φ̂∆)

cos(φls + φ̂∆) cos(λls + λ̂∆) cos(φls + φ̂∆) sin(λls + λ̂∆) sin(φls + φ̂∆)






,

and rbHRN/IMU is known. During the mapping phase, we compute the locations of tracking features
in the planet-surface, planet-fixed reference frame with the origin at the corrected ILS. Referring
to Fig. 7, we obtain the relationship r̂sF/ILS as

r̂sF/ILS = T̂s
fT

f
i,mTi

b(ˆ̄q
b
i,m)Tb

hy
h
F/HRN,m − r̂sILS/HRN,m , (67)

where t = tm, ˆ̄qb
i,m and r̂sILS/HRN,m are propagated from t = tj to t = tm using an HRN-based

IMU initialized by state estimates from the EKF to compute ˆ̄qb
i,j and r̂sILS/HRN,j , respectively,

and yh
F/HRN,m is the HRN measurement where,

yh
F/HRN,m = rhF/HRN,m + bhrn + ηhrn,m (68)
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Figure 5. HDA modeling–Step 1–Locating the HRN sensor.

bhrn is the HRN bias in the HRN reference frame, and ηhrn,m is a zero-mean, Gaussian, white-noise

sequence with E
{

ηhrn,m

}

= 0, ∀tm and E
{

ηhrn,mη
T
hrn,j

}

= Rhrn,mδm,j ∈ R
3×3, Rhrn,m > 0,

∀tm. We often model the HRN bias, bhrn, as a random constant with

ḃhrn = 0, (69)

where E {bhrn} = 0 and E
{

bhrnb
T
hrn

}

= Pbhrn
> 0 ∈ R

3×3.
Consider the navigation phase of the HRN depicted in Fig. 8. Using the measurement model

in Eq. (76) we can write

ŷh
F/HRN,m = r̂hF/HRN,m + b̂hrn. (70)

To compute δyh
F/HRN,m := yh

F/HRN,m − ŷh
F/HRN,m, consider Fig. 8 to obtain

rhF/HRN,k = −Th
b

[

Ti
b(q̄

b
i,k)r

i
IMU,k + rbHRN/IMU −Ti

b(q̄
b
i,k)T

i
f,k

(

r̂
f
ILS + T̂f

s

(

r̂sF/ILS −∆rsF

))]

,

from which it follows that

r̂hF/HRN,k = −Th
b

[

Ti
b(ˆ̄q

b
i,k)r̂

i
IMU,k + rbHRN/IMU −Ti

b(ˆ̄q
b
i,k)T

i
f (tk)

(

r̂
f
ILS + T̂f

s

(

r̂lFi/ILS − ∆̂rsF,k

))]

.

Defining δbhrn,k := bhrn−b̂hrn,k, δ∆rsF,k := ∆rsF−∆̂rsF,k and δrhF/HRN,k := rhF/HRN,k−r̂hF/HRN,k,
it follows that

δyh
F/HRN,m = δrhF/HRN,k + δbhrn,k + ηhrn,k, (71)
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Figure 6. HDA modeling–Step 2–Locating the surface features.

where

δrhF/HRN,k = −

[

Th
bT

i
b(ˆ̄q

b
i,k)

]

δriIMU,k −

[

Th
bT

i
b(ˆ̄q

b
i,k)T

i
f,kT̂

f
s

]

δ∆rsF,k (72)

−

[

Th
b

(

Ti
b(ˆ̄q

b
i,k)

(

r̂iIMU,k −Ti
f,k

(

r̂
f
ILS + T̂f

s

(

r̂sF/ILS − ∆̂rsF,k

))

)

)

×

]

δαk.

VII. Navigation Algorithm Implementation

Let the state vector, xk at tk be given by

xk =































riimu,k

vi
imu,k

δαk

∆rbcg/imu

pa

pg

pm

ps































∈ R
49×49 (73)
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where the parameter vectors for the accelerometer, gyro, map tie errors, and sensor biases are
defined as

pa =







ba

sa

γa






, pg =







bg

sg

γg






, pm =







h∆

φ∆

λ∆






, and ps =











balt

bvel

bsc

btrn











.

Therefore, pa ∈ R
12, pg ∈ R

12, pm ∈ R
3, and ps ∈ R

10.
The TRN and HRN will not be used for navigation at the same time. This enables the reuse

of several key state variables. During the TRN phase we expect that the map-tie errors will
be reduced, hence we will estimate pm = (h∆, φ∆, λ∆). Once the HRN phase begins, we stop
updating the corrected ILS to ensure that guidance and targeting are not chasing a moving landing
site. However, during HRN we will need to estimate ∆rsF ∈ R

3, so we reset pm → ∆rsF . We can
also reset btrn → bhrn.

One caveat to the state estimate update given by Eq. (12) is that of the attitude update. All of
the preceding developments have focused on the attitude error in the form of small angles, denoted
by δαk. If the portion of x̂+

k pertaining to the attitude is given by δα̂
+
k , then the quaternion

update is

ˆ̄qb+

i,k =

[

1
2δα̂

+
k

1

]

⊗ ˆ̄qb−

i,k, (74)

where ˆ̄qb−

i,k is the a priori estimate of the quaternion and δα̂−

k = 0. The quaternion in Eq. (82)
satisfies the unity norm constraint only to first order, and so to ensure that the quaternion remains
unity norm a normalization is performed.
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